Unique fiber sum decomposability of genus 2 Lefschetz fibrations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Holomorphicity of Genus Two Lefschetz Fibrations

We prove that any genus-2 Lefschetz fibration without reducible fibers and with “transitive monodromy” is holomorphic. The latter condition comprises all cases where the number of singular fibers μ ∈ 10N is not congruent to 0 modulo 40. An auxiliary statement of independent interest is the holomorphicity of symplectic surfaces in Sbundles over S, of relative degree ≤ 7 over the base, and of sym...

متن کامل

Quandles and Lefschetz Fibrations

We show that isotopy classes of simple closed curves in any oriented surface admit a quandle structure with operations induced by Dehn twists, the Dehn quandle of the surface. We further show that the monodromy of a Lefschetz fibration can be conveniently encoded as a quandle homomorphism from the knot quandle of the base as a manifold with a codimension 2 subspace (the set of singular values) ...

متن کامل

Lefschetz Fibrations in Symplectic Geometry

One of the cornerstones of complex geometry is the link between positivity of curvature and ampleness. Let X be a compact complex manifold and L ! X be a holomorphic line bundle over X. Suppose that L has a unitary connection whose curvature form is ?2i! where ! is a positive (1; 1)-form on X. Then for large k the line bundle L k has many holomorphic sections. More precisely, the holo-morphic s...

متن کامل

Lefschetz Fibrations and Symplectic Homology

We show that for each k > 3 there are infinitely many finite type Stein manifolds diffeomorphic to Euclidean space R which, as symplectic manifolds are pairwise not symplectomorphic to each other.

متن کامل

Lefschetz Fibrations of 4-Dimensional Manifolds

An n-dimensional manifold is an object which locally resembles n-dimensional Euclidean space. Different categories of manifolds can be considered simply by requiring different sorts of maps to perform these local identifications: A manifold may be smooth (if the maps are required to be infinitely differentiable), or complex (if n is even and the maps are required to be holomorphic), or topologi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2017

ISSN: 0166-8641

DOI: 10.1016/j.topol.2017.02.068